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LETI‘ER TO THE EDITOR 

Relativistic effects selecting the superfluid phase of neutron 
star matter 

A Love and S J Stow 
Physics Department, Bedford College, University of London, Regent’s Park, London 
NW14NS, United Kingdom 

Received 25 October 1982 

Abstract. The BCS free energy for 3P2 paired neutron matter is derived taking account 
of relativistic effects. It is found that the values taken‘by the Ginzburg-Landau parameters 
are always in the region of the phase diagram corresponding to a unitary phase. 

Densities in the cores of neutron stars are thought to be sufficient to produce 3 P ~  
paired neutron superfluid (HofTberg et a1 1970, Tamagaki 1970). This anisotropic 
superfluid can have a significant influence on the observable properties of a neutron 
star, e.g. by affecting the rate of cooling by neutrino emission (Maxwell et a1 1978), 
and by affecting the characteristic time for the transfer of angular momentum between 
the interior and the surface of the star through interactions of electrons with vortex 
cores (Sauls and Stein 1981). It is, therefore, important to know which of the possible 
Pz paired superfluid phases is realised. For different values of the parameters in the 

Ginzburg-Landau free energy, unitary phases and two distinct non-unitary phases are 
possible (see figure 1). With the (non-relativistic) BCS values of the parameters, the 
unitary phase region of the phase diagram (region 111) is selected. 

Sauls and Serene (1978) have investigated the possibility that strong-coupling 
corrections might instead select one of the non-unitary phases, but have found that 
these corrections are too small, and in any case go in the wrong direction. There is, 
however, a much larger effect that has not so far been investigated, namely, the 
modification of the Ginzburg-Landau parameters in the BCS theory by relativistic 
corrections. At a Fermi energy of about 100 MeV, we should have (pF/m)’ = 0.2 for 
neutrons, and 20% corrections to the Ginzburg-Landau parameters are to be expected. 
Corrections of this size, if they were to go in the right direction, could be adequate 
to move the system into the nearby region I1 of figure 1, where the order parameter 
is non-unitary. The purpose of this letter is to present a calculation of the BCS free 
energy for 3P2 paired neutron matter, taking account of relativistic effects. 

The relativistic gap equations may be derived from the Dyson equation for the 
proper self-energy of a neutron, using a method developed for non-relativistic 
superfluids by Nambu (1960). In this method, it is necessary to introduce an effective 
Lagrangian term 

3 

ZA = J A G  (1) 
where $ is the Dirac field of the neutron, GC is the charge conjugate field, and the 
gap matrix A is a 4 x 4  matrix in Dirac spinor indices. The gap matrix A is then 
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Figure 1. Phase diagram for the 'P2 neutron superfluid. Region I11 corresponds to unitary 
phases, and regions I and I11 correspond to distinct non-unitary phases. The parameters 
p ,  q, r are as in equations (34)-(36). The non-relativistic limit is indicated by 0, and the 
ultra-relativistic limit is indicated by *. 

calculated self-consistently from the Dyson equation. For the case of 3Pz paired 
neutron superfluid the most general form of the gap matrix consistent with Fermi 
statistics is 

where 

n = f  (3) 
for neutrons of momentum k and -k pairing, and the covariants S, $, T, X, Y, ?, 
constructed to have definite values of L, are defined to be 

T . . = n .  if .-I 36ij (4) 

Xij = 3 [ ( n  x YYsIinj + (n  x ~ ~ 5 ) j n i I .  (9) 
The matrices A!;', p = 1 , .  . . , 6 ,  are symmetric and traceless because they describe 
J = 2 pairing. 

The derivation of relativistic gap equations for J = 0 and J = 1 pairing has been 
discussed in a number of recent papers (Barrois 1979, Bailin and Love 1981a, b, 
1982a, b) and we omit the (lengthy) details of the present J = 2 calculation. The gap 
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equations for the individual matrices A$‘) are highly model dependent, involving the 
detailed form of pairing force assumed. However, the gap equations for the possible 
order parameters may be expressed in terms of the helicity amplitudes for neutron- 
neutron scattering, in a form which is independent of the particular pairing force. In 
the first instance, the gap equations arise in terms of the coupled order parameters 
de), 8 = 1, 2, where 

(10) (4) 1 (5) d‘” = pFA‘” + p (A‘” + $A(3)) - m (A + 5A ) 

d ( 2 )  = - (A(2) - + CL (A(4) - +pFA(6). (1 1) 
Here, de) and A(p) are 3 x 3 matrices, and 

p = ( p :  +m2)l? 

The gap equations in the Ginzburg-Landau region for these coupled order parameters 
are 

d‘e) =Fe*(A d(*)+BD(*)) (13) 

A = b(dn/ds) ln(.Ypso) (14) 

where 

B = -&(dn/ds )(~kBTJ-~9(33) 

dnlde = CLpF/Ir2 

and Fe* is the matrix of helicity amplitudes 
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Thus 

The diagonalised equations may be written as 

where 
,$(dn/dE)t(e)e(e) = BE(e),  e = i , 2 ,  

t (e '=  ( T -  T:)) /T?)  

ln(.9fi:e)EO) = (;A (') dn/d&)-'. 

The order parameter e@' with the higher critical temperature is the one which 
orders at the phase transition. Then, in (27), in the gap equation for the relevant 
order parameter, the other order parameter should be set to zero. It is just as easy 
to handle both possibilities, e(') orders or e ( 2 )  ordering in a single formula, so we do 
this and return later to the question of which of e'" and e (2 )  orders in reality. Then 
we obtain the gap equation for the order parameter e'" 

,$(dn/dE)te = ( B k / 6 3 ~ ~ ) [ 6 ( x ~  +x2y2 - 2y4) Tr(e2)e * + 6(2x4 + 14x2y2 + 5y4) Tr(e*e)e 

- 9(8x2y2 - y4)(e 2e * + e  * e 2 ) ]  

k'@'= 1 2 

(30) 

(3 1) 
where 

for 8 = 1 , 2  Y3 

and we have suppressed the index e on e, t, T,, k, x, y. 
In arriving at (30), we have used the identity for traceless 3 x 3 matrices e, 

2ee*e +2e2e*+2e*e2 =Tr(e2)e*+2Tr(e*e)e (32) 
to eliminate ee*e.  The Ginzburg-Landau free energy corresponding to the gap 
equation (30) is 

9cc,$(dn/d&)t Tr(e*e) - (Bk/63p2){plTr(e2)12 +q[Tr(e*e)I2+r Tr(e*2e2)} (33) 
where the constant of proportionality, which is inessential here, is not determined by 
the gap equation. Again, the index 8 has been suppressed, and 

p = 3(x4+x2y2-2y4) (34) 

q =3(2x4+14x2y2+5y4) (35) 

r = -9(8x2y2-y4). (36) 
The quantities xe and Ye are as in (20). 
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To identify the order parameter for the realistic case of neutron star matter we 
consider the non-relativistic limit in which z + 2&. Then, using (2% (20), (10) and 
(1 l), we find that 

e'1) + d/fm (A'3' - A'5)) 

e"' + d m  (A(4) - A'*)). 
(37) 
(38) 

Now, we see from (2) that in the non-relativistic limit e''' and e"' are respectively 
pure L = 3 and pure L = 1 order parameters. Thus, the realistic 'Pz pairing is described 
by the order parameter e"'. Accordingly we shall now restrict attention to the 
Ginzburg-Landau free energy for the order parameter e(2) .  For this case, the non- 
relativistic limit of (34), (35) and (36) gives 

P =o, r = -9, (39) 
in agreement with Sauls and Serene (1978), and the system is in region I11 of figure 
1, corresponding to a unitary phase. In general, the criterion for region I11 is 

4p +2b( + r  < 0. (40) 

It is easy to check that this criterion is always satisfied by the p, q and r of (34), (35) 
and (36), for the physically allowed values of z 

Oszs2&. (41) 
Thus, even after taking account of relativistic effects, the system is always in a 

unitary phase. This is despite a striking variation in the Ginzburg-Landau parameters 
in going from the non-relativistic limit, of (39), to the ultra-relativistic limit (z + 0), 
where 

r : q  :p =3:5: -2. (42) 
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